本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。
最近,NLP明星公司Hugging Face发布了一个叫做Infinity的产品,可以以1ms延时完成Transformer的推理,性能相当高了。
但是,厉害归厉害,还是有点贵——1年至少要十几万块 (2万美元)。
那有没有什么平替的方法呢?
有的!还是开源的、“不费吹灰之力”就可以达到Infinity一些公共基准的那种。
并且现在,通过在该方法上施加一个小trick,将Transformer的推理速度提高4.5倍!
△ 帖子发布不到一天就收获了250+热度
那么,一个“平替”到底为什么能达到“付费”的效果呢?
一个trick让Transformer推理速度提高4.5倍
先来认识一下这个方法:Transformer-deploy。
它可以用一行命令优化和部署Hugging Face上的Transformer模型,并支持大多数基于Transformer编码器的模型,比如Bert、Roberta、miniLM、Camembert、Albert、XLM-R、Distilbert等。
Transformer-deploy推理服务器用的是Nvidia Triton。
推理引擎为Microsoft ONNX Runtime(用于CPU和GPU推理)和Nvidia TensorRT(仅限 GPU)。
如果想在GPU上获得一流的性能,Nvidia Triton+Nvidia TensorRT这样的组合无疑是最佳选择。
虽然TensorRT用起来有点难,但它确实能比用Pytorch快5~10倍。
在实际性能测试中,Transformer-deploy在batch size为1、token分别为16和128的输入序列中的推理速度,都比付费的Hugging Face Infinity要快:
Transformer-deploy在token为16时要1.52ms,Infinity则需要1.7ms;token为128时需要1.99ms,Infinity则需要2.5ms。
那前面说的能让Transformer的推理性能进一步提高的小trick是什么呢?
GPU量化(quantization)。
作者表示:
据我所知,目前任何OOS云服务都还没用到过这个方法。
不过执行GPU量化需要修改模型源代码(需在矩阵乘法等代价高昂的操作上添加一些叫做QDQ的特定节点),既容易出错,又很无聊,并且还需自己维护修改后的代码。
因此作者已经为多个基于Transformer的模型手动完成了这项工作。
后来,他们又发现似乎只需修补模型模块的抽象语法树 (AST)也可以自动完成。
在用户端,在GPU上执行模型的基本量化类似这样:
最终,该方法在Roberta-base模型和MNLI数据集(分类任务)上实现了4.53倍的推理速度。
当然这也牺牲了0.4个点的精度;如果一点不牺牲的话,也可以加速3.2倍左右。
作者表示,与Transformer-deploy原来的版本相比,这已经是一个很大的改进了,毕竟原版本的加速成本需要超过1个点的精确度。
最终他们用Albert、Bert(包括miniLM)、Distilbert、Roberta(包括 Camembert、XLM-R、DistilRoberta等)、Electra测试了该trick。
结果是对于任何可以导出为ONNX格式的Transformer模型,都可以“开箱即用”。
Ubuntu是一个以桌面应用为主的Linux操作系统。它是一个开放源代码的自由软件,提供了一个健壮、功能丰富的计算环境,既适合家庭使用又适用于商业环境。Ubuntu将为全球数百个公司提供商业支持。 ...
查看全文Docker采取了一种保守的方法来清理未使用的对象(通常称为“垃圾收集”),例如图像,容器,卷和网络:除非您明确要求Docker这样做,否则通常不会删除这些对象。这可能会导致Docker使用额外的磁盘空...
查看全文新浪科技讯 北京时间5月27日晚间消息,据报道,四位知情人士今日透露,亚马逊、微软和谷歌这三大云计算服务提供商,正在竞争波音公司(Boeing)价值10亿美元的云服务合同。 这些...
查看全文新浪科技讯 北京时间5月27日晚间消息,据报道,多位知情人士今日称,继加州、纽约州和华盛顿州之后,马萨诸塞州和宾夕法尼亚州的总检察长也加入到对亚马逊的反垄断调查中。 如今,越来越...
查看全文
您好!请登录