大家好,我是Peter~
全国旅游城市终于又更新啦!以前写过厦门、长沙、成都、西安、大连。今天带来的是:上有天堂,下有苏杭:苏州来了??终于挤出时间把苏州的旅游景点和美食的攻略写完了。
很多年之前Peter去苏州旅游过一次,所以还是有些印象。到现在还记得当年去的几个景点:观前街、留园、苏州博物馆……
个人觉得苏州这个城市还是蛮不错的,真的是江南城市代表。到达苏州站,看到苏州护城河,河街相邻;走到城市中,房子低檐,粉墙黛瓦,老街园林到处可见;看到各种园林古迹,历史感比较厚重;听到当地人说话,温婉尔雅,轻声细语。
将来一定会找个时机再游苏州~
苏州
苏州是中国经济高度发达的地区,是江苏省的经济中心、工商业和物流中心城市,也是重要的金融、文化、艺术、教育和交通中心。下面这幅图来自维基百科,可以看到组成苏州的几个县级市和区。巩固下地理吧~
数据来源
本文中共有两份数据:苏州美食和苏州景点。数据是通过爬虫方式获取的,文末有数据分析源码获取方式。
郑重声明:本文的数据仅作为数据分析和可视化效果展示使用,未用作其他用途;若有转载,请注明出处~
数据效果
我们以苏州景点的数据分析作为展示。本文亮点是所有的图形使用的是可视化库:pyecharts,这是一个国产的可视化库
苏州景点
苏州景点的数据分析主要是从以下几个方面展开:
导入库 import pandas as pd import re # 显示所有列 # pd.set_option(display.max_columns, None) # 显示所有行 # pd.set_option(display.max_rows, None) # 设置value的显示长度为100,默认为50 # pd.set_option(max_colwidth,100) # 绘图相关 import jieba import matplotlib.pyplot as plt from pyecharts.globals import CurrentConfig, OnlineHostType # 事先导入,防止不出图 from pyecharts import options as opts # 配置项 from pyecharts.charts import Bar, Pie, Line, Funnel, WordCloud, Grid, Page # 各个图形的类 from pyecharts.commons.utils import JsCode from pyecharts.globals import ThemeType,SymbolType
省略相关的数据导入和数据探索部分,重点是看看数据分析的结果。苏州景点数据有2000*8
景点分布
在这里展示的苏州各个地方的景点个数:
c = ( Pie(init_opts=opts.InitOpts(theme=ThemeType.CHALK)) .add(“”, [list(z) for z in zip(df2[“location”].tolist(), df2[“number”].tolist())]) .set_global_opts(title_opts=opts.TitleOpts(title=”苏州景点分布”), legend_opts=opts.LegendOpts(pos_left=”80%”, orient=”vertical”)) .set_series_opts(label_opts=opts.LabelOpts(formatter=”{b}: {c}”)) ) c.render_notebook()
攻略数前10名的景点
很多的景点都有游客写了攻略数,我们可以把攻略数作为一种参考:
景点评论数
驴友百分比
驴友百分比表示的是大致有多少的游客到过相同的景点:
园林城市
苏州是一个园林城市,我们从数据中看到:本次获取到的数据里面苏州有457个和“园”相关的景点。比较出名的还是:
拙政园 留园 网师园
古城街道
苏州也是一个历史感很厚重的城市,数据中显示有106条的街道:
山塘街 平江路历史街区 观前街
寺庙
数据中也显示苏州共有96个寺庙:其中最为出名的还是寒山寺
月落乌啼霜满天,江枫渔火对愁眠,姑苏城外寒山寺,夜半钟声到客船
景点词云图
我们获取到的数据景点的中文名和简介进行了词云图展示:
1、全部的词云展示
2、截取前50个高频词
通过两种词云图的展示,我们发现苏州的景点中:
公园是比较多的 各种馆,比如:博物馆、展览馆、艺术馆、美术馆等也很丰富 文化气息浓厚:文化、文物保护、建筑等 苏州美食
苏州美食数据有2000条,6个字段。
得分分布
得分这个字段的分布情况。得分为0.0表示没有得分
从上图中我们可以看到很多店是没有评分的。接下来,我们看看评分为5分的都是哪些店铺(取前10名)
牛排店 知名酒店 咖啡厅
消费均价
对字段“均价”的统计分析,分类的规则:
def price(x): if x < 20: return “很便宜” if x < 50: return “价格亲民” if x < 100: return “可以接受” if x < 200: return “人均消费较高” else: return “高档餐厅”
利用下面的代码进行饼图的绘制:
c = ( Pie(init_opts=opts.InitOpts(theme=ThemeType.CHALK)) .add(“”, [list(z) for z in zip(df5[“分类”].tolist(), df5[“数量”].tolist())]) .set_global_opts(title_opts=opts.TitleOpts(title=”苏州美食店铺均价数量占比分布”,subtitle=”备注:排除没有均价店铺”), legend_opts=opts.LegendOpts(pos_left=”80%”, orient=”vertical”)) .set_series_opts(label_opts=opts.LabelOpts(formatter=”{b}: {c}”)) ) c.render_notebook()
高消费餐厅
通过均价字段的降序,我们看看苏州的高消费地方都是哪里?
酒店
数据中显示苏州有酒店86家,其中知名的酒店:
苏州洲际酒店 金陵饭店花园酒店 苏州金鸡湖新罗酒店
面馆
总共117家面馆,如果你是个面食爱好者,这些地方你一定不要错过:
老东吴面馆(莫厘路店) 奥灶面 同得兴精品面馆(观前街店)
美食店统计
从面馆、烧烤、酒店、火锅串串等8个不同的方面进行美食店铺的统计:
美食词云
苏州的美食词云图主要是将数据的“推荐菜”这个字段进行词云图的展示,看看当地人爱好哪些美食。
1、全部词云图
2、前50个词语
从词云图中可以看到,苏州人的口味还是很清淡的。游客的推荐菜中:
牛肉为主要菜品 菜的做法:红烧(肉)、清蒸、烤 钟爱虾:虾、虾仁、河虾等 喜欢海鲜:尤其是鱼,还有鱿鱼、、三文鱼等
苏州属于太湖境内,肯定是不能错过大闸蟹。
总结
看完上面苏州旅游景点和美食的分析,如果你到苏州必去的地方:
园林:拙政园、留园 寺庙:寒山寺、重元寺 街道:山塘街、平江路历史街区、观前街 苏州博物馆
你必不能错过的美食:
苏州的牛肉(牛肉粉、牛肉酥等),可以品尝 虾蟹:太湖区域水产品多,比如虾仁、大闸蟹等 面食:馄饨、生煎你也不能错过。记得当时Peter吃过一家名为“乐惠”的小馄饨,挺赞的~还有苏式汤面也值得品尝
Ubuntu是一个以桌面应用为主的Linux操作系统。它是一个开放源代码的自由软件,提供了一个健壮、功能丰富的计算环境,既适合家庭使用又适用于商业环境。Ubuntu将为全球数百个公司提供商业支持。 ...
查看全文Docker采取了一种保守的方法来清理未使用的对象(通常称为“垃圾收集”),例如图像,容器,卷和网络:除非您明确要求Docker这样做,否则通常不会删除这些对象。这可能会导致Docker使用额外的磁盘空...
查看全文新浪科技讯 北京时间5月27日晚间消息,据报道,四位知情人士今日透露,亚马逊、微软和谷歌这三大云计算服务提供商,正在竞争波音公司(Boeing)价值10亿美元的云服务合同。 这些...
查看全文新浪科技讯 北京时间5月27日晚间消息,据报道,多位知情人士今日称,继加州、纽约州和华盛顿州之后,马萨诸塞州和宾夕法尼亚州的总检察长也加入到对亚马逊的反垄断调查中。 如今,越来越...
查看全文
您好!请登录