传统的讲座通常伴随着一组 pdf 幻灯片。一般来说,想要对此类讲座做笔记,需要从 pdf 复制、粘贴很多内容。
最近,来自 K1 Digital 的高级机器学习工程师 Lucas Soares 一直在尝试通过使用 OCR(光学字符识别)自动转录 pdf 幻灯片,以便直接在 markdown 文件中操作它们的内容,从而避免手动复制和粘贴 pdf 内容,实现这一过程的自动化。
左为项目作者 Lucas Soares。
项目地址:https://github.com/EnkrateiaLucca/ocr_for_transcribing_pdf_slides
为什么不使用传统的 pdf 转文本工具呢?
Lucas Soares 发现传统工具往往会带来更多的问题,需要花时间解决。他曾经尝试使用传统的 Python 软件包,但是遇到了很多问题(例如必须使用复杂的正则表达式模式解析最终输出等),因此决定尝试使用目标检测和 OCR 来解决。
基本过程可分为以下步骤:
将 pdf 转换为图片; 检测和识别图像中的文本; 展示示例输出。
基于深度学习的 OCR 将 pdf 转录为文本
将 pdf 转换为图像
Soares 使用的 pdf 幻灯片来自于 David Silver 的增强学习(参见以下 pdf 幻灯片地址)。使用「pdf2image」包将每张幻灯片转换为 png 图像格式。
pdf 幻灯片示例。
地址:https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf
代码如下:
from pdf2image import convert_from_path from pdf2image.exceptions import ( PDFInfoNotInstalledError, PDFPageCountError, PDFSyntaxError ) pdf_path = “path/to/file/intro_RL_Lecture1.pdf” images = convert_from_path(pdf_path) for i, image in enumerate(images): fname = “image” + str(i) + “.png” image.save(fname, “PNG”)
经过处理后,所有的 pdf 幻灯片都转换成 png 格式的图像:
检测和识别图像中的文本
为了检测和识别 png 图像中的文本,Soares 使用 ocr.pytorch 库中的文本检测器。按照说明下载模型并将模型保存在 checkpoints 文件夹中。
ocr.pytorch 库地址:https://github.com/courao/ocr.pytorch
代码如下:
# adapted from this source: https://github.com/courao/ocr.pytorch %load_ext autoreload %autoreload 2 import os from ocr import ocr import time import shutil import numpy as np import pathlib from PIL import Image from glob import glob import matplotlib.pyplot as plt import seaborn as sns sns.set() import pytesseract def single_pic_proc(image_file): image = np.array(Image.open(image_file).convert(RGB)) result, image_framed = ocr(image) return result,image_framed image_files = glob(./input_images/*.*) result_dir = ./output_images_with_boxes/ # If the output folder exists we will remove it and redo it. if os.path.exists(result_dir): shutil.rmtree(result_dir) os.mkdir(result_dir) for image_file in sorted(image_files): result, image_framed = single_pic_proc(image_file) # detecting and recognizing the text filename = pathlib.Path(image_file).name output_file = os.path.join(result_dir, image_file.split(/)[-1]) txt_file = os.path.join(result_dir, image_file.split(/)[-1].split(.)[0]+.txt) txt_f = open(txt_file, w) Image.fromarray(image_framed).save(output_file) for key in result: txt_f.write(result[key][1]+ ) txt_f.close()
设置输入和输出文件夹,接着遍历所有输入图像(转换后的 pdf 幻灯片),然后通过 single_pic_proc() 函数运行 OCR 模块中的检测和识别模型,最后将输出保存到输出文件夹。
其中检测继承(inherit)了 Pytorch CTPN 模型,识别继承了 Pytorch CRNN 模型,两者都存在于 OCR 模块中。
示例输出
代码如下:
import cv2 as cv output_dir = pathlib.Path(“./output_images_with_boxes”) # image = cv.imread(str(np.random.choice(list(output_dir.iterdir()),1)[0])) image = cv.imread(f”{output_dir}/image7.png”) size_reshaped = (int(image.shape[1]),int(image.shape[0])) image = cv.resize(image, size_reshaped) cv.imshow(“image”, image) cv.waitKey(0) cv.destroyAllWindows()
下图左为原始 pdf 幻灯片,图右为转录后的输出文本,转录后的准确率非常高。
文本识别输出如下:
filename = f”{output_dir}/image7.txt” with open(filename, “r”) as text: for line in text.readlines(): print(line.strip(” “))
通过上述方法,最终你可以得到一个非常强大的工具来转录各种文档,从检测和识别手写笔记到检测和识别照片中的随机文本。拥有自己的 OCR 工具来处理一些文本内容,这比依赖外部软件来转录文档要好的多。
Ubuntu是一个以桌面应用为主的Linux操作系统。它是一个开放源代码的自由软件,提供了一个健壮、功能丰富的计算环境,既适合家庭使用又适用于商业环境。Ubuntu将为全球数百个公司提供商业支持。 ...
查看全文Docker采取了一种保守的方法来清理未使用的对象(通常称为“垃圾收集”),例如图像,容器,卷和网络:除非您明确要求Docker这样做,否则通常不会删除这些对象。这可能会导致Docker使用额外的磁盘空...
查看全文新浪科技讯 北京时间5月27日晚间消息,据报道,四位知情人士今日透露,亚马逊、微软和谷歌这三大云计算服务提供商,正在竞争波音公司(Boeing)价值10亿美元的云服务合同。 这些...
查看全文新浪科技讯 北京时间5月27日晚间消息,据报道,多位知情人士今日称,继加州、纽约州和华盛顿州之后,马萨诸塞州和宾夕法尼亚州的总检察长也加入到对亚马逊的反垄断调查中。 如今,越来越...
查看全文
您好!请登录