合并区间
力扣题目链接:https://leetcode-cn.com/problems/merge-intervals
给出一个区间的集合,请合并所有重叠的区间。
示例 1:
输入: intervals = [[1,3],[2,6],[8,10],[15,18]] 输出: [[1,6],[8,10],[15,18]] 解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2:
输入: intervals = [[1,4],[4,5]] 输出: [[1,5]] 解释: 区间 [1,4] 和 [4,5] 可被视为重叠区间。 注意:输入类型已于2019年4月15日更改。请重置默认代码定义以获取新方法签名。
提示:
intervals[i][0] <= intervals[i][1]
˼·
大家应该都感觉到了,此题一定要排序,那么按照左边界排序,还是右边界排序呢?
都可以!
那么我按照左边界排序,排序之后局部最优:每次合并都取最大的右边界,这样就可以合并更多的区间了,整体最优:合并所有重叠的区间。
局部最优可以推出全局最优,找不出反例,试试贪心。
那有同学问了,本来不就应该合并最大右边界么,这和贪心有啥关系?
有时候贪心就是常识!哈哈
按照左边界从小到大排序之后,如果 intervals[i][0] < intervals[i – 1][1] 即intervals[i]左边界 < intervals[i – 1]右边界,则一定有重复,因为intervals[i]的左边界一定是大于等于intervals[i – 1]的左边界。
即:intervals[i]的左边界在intervals[i – 1]左边界和右边界的范围内,那么一定有重复!
这么说有点抽象,看图:(注意图中区间都是按照左边界排序之后了)
合并区间
知道如何判断重复之后,剩下的就是合并了,如何去模拟合并区间呢?
其实就是用合并区间后左边界和右边界,作为一个新的区间,加入到result数组里就可以了。如果没有合并就把原区间加入到result数组。
C++代码如下:
class Solution { public: // 按照区间左边界从小到大排序 static bool cmp (const vector& a, const vector& b) { return a[0] < b[0]; } vector merge(vector& intervals) { vector result; if (intervals.size() == 0) return result; sort(intervals.begin(), intervals.end(), cmp); bool flag = false; // 标记最后一个区间有没有合并 int length = intervals.size(); for (int i = 1; i < length; i++) { int start = intervals[i – 1][0]; // 初始为i-1区间的左边界 int end = intervals[i – 1][1]; // 初始i-1区间的右边界 while (i < length && intervals[i][0] <= end) { // 合并区间 end = max(end, intervals[i][1]); // 不断更新右区间 if (i == length – 1) flag = true; // 最后一个区间也合并了 i++; // 继续合并下一个区间 } // start和end是表示intervals[i – 1]的左边界右边界,所以最优intervals[i]区间是否合并了要标记一下 result.push_back({start, end}); } // 如果最后一个区间没有合并,将其加入result if (flag == false) { result.push_back({intervals[length – 1][0], intervals[length – 1][1]}); } return result; } };
当然以上代码有冗余一些,可以优化一下,如下:(思路是一样的)
class Solution { public: vector merge(vector& intervals) { vector result; if (intervals.size() == 0) return result; // 排序的参数使用了lamda表达式 sort(intervals.begin(), intervals.end(), [](const vector& a, const vector& b){return a[0] < b[0];}); result.push_back(intervals[0]); for (int i = 1; i < intervals.size(); i++) { if (result.back()[1] >= intervals[i][0]) { // 合并区间 result.back()[1] = max(result.back()[1], intervals[i][1]); } else { result.push_back(intervals[i]); } } return result; } }; 时间复杂度:O(nlogn) ,有一个快排 空间复杂度:O(1),我没有算result数组(返回值所需容器占的空间) 总结
对于贪心算法,很多同学都是:如果能凭常识直接做出来,就会感觉不到自己用了贪心, 一旦第一直觉想不出来, 可能就一直想不出来了。
跟着「代码随想录」刷题的录友应该感受过,贪心难起来,真的难。
那应该怎么办呢?
正如我贪心系列开篇词关于贪心算法,你该了解这些!中讲解的一样,贪心本来就没有套路,也没有框架,所以各种常规解法需要多接触多练习,自然而然才会想到。
「代码随想录」会把贪心常见的经典题目覆盖到,大家只要认真学习打卡就可以了。
其他语言版本
Java
class Solution { public int[][] merge(int[][] intervals) { List res = new LinkedList<>(); Arrays.sort(intervals, (o1, o2) -> Integer.compare(o1[0], o2[0])); int start = intervals[0][0]; for (int i = 1; i < intervals.length; i++) { if (intervals[i][0] > intervals[i – 1][1]) { res.add(new int[]{start, intervals[i – 1][1]}); start = intervals[i][0]; } else { intervals[i][1] = Math.max(intervals[i][1], intervals[i – 1][1]); } } res.add(new int[]{start, intervals[intervals.length – 1][1]}); return res.toArray(new int[res.size()][]); } } // 版本2 class Solution { public int[][] merge(int[][] intervals) { LinkedList res = new LinkedList<>(); Arrays.sort(intervals, (o1, o2) -> Integer.compare(o1[0], o2[0])); res.add(intervals[0]); for (int i = 1; i < intervals.length; i++) { if (intervals[i][0] <= res.getLast()[1]) { int start = res.getLast()[0]; int end = Math.max(intervals[i][1], res.getLast()[1]); res.removeLast(); res.add(new int[]{start, end}); } else { res.add(intervals[i]); } } return res.toArray(new int[res.size()][]); } }
Python
class Solution: def merge(self, intervals: List[List[int]]) -> List[List[int]]: if len(intervals) == 0: return intervals intervals.sort(key=lambda x: x[0]) result = [] result.append(intervals[0]) for i in range(1, len(intervals)): last = result[-1] if last[1] >= intervals[i][0]: result[-1] = [last[0], max(last[1], intervals[i][1])] else: result.append(intervals[i]) return result
Go
func merge(intervals [][]int) [][]int { //先从小到大排序 sort.Slice(intervals,func(i,j int)bool{ return intervals[i][0]
Ubuntu是一个以桌面应用为主的Linux操作系统。它是一个开放源代码的自由软件,提供了一个健壮、功能丰富的计算环境,既适合家庭使用又适用于商业环境。Ubuntu将为全球数百个公司提供商业支持。 ...
查看全文Docker采取了一种保守的方法来清理未使用的对象(通常称为“垃圾收集”),例如图像,容器,卷和网络:除非您明确要求Docker这样做,否则通常不会删除这些对象。这可能会导致Docker使用额外的磁盘空...
查看全文新浪科技讯 北京时间5月27日晚间消息,据报道,四位知情人士今日透露,亚马逊、微软和谷歌这三大云计算服务提供商,正在竞争波音公司(Boeing)价值10亿美元的云服务合同。 这些...
查看全文新浪科技讯 北京时间5月27日晚间消息,据报道,多位知情人士今日称,继加州、纽约州和华盛顿州之后,马萨诸塞州和宾夕法尼亚州的总检察长也加入到对亚马逊的反垄断调查中。 如今,越来越...
查看全文
您好!请登录